- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Holland, Murray (3)
-
Mehling, Kendall (3)
-
Axelrad, Penina (2)
-
LeDesma, Catie (2)
-
Nicotra, Marco (2)
-
Shao, Jieqiu (2)
-
Wilson, John Drew (2)
-
Anderson, Dana Z (1)
-
Anderson, Dana Z. (1)
-
Chih, Liang-Ying (1)
-
Combes, Joshua (1)
-
LeDesma, Catie K. (1)
-
Nicotra, Marco M. (1)
-
Theurkauf, Anne Cross (1)
-
Zozulya, Alex A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we propose a paradigm for atom interferometry and demonstrate that there exists a universal set of atom optic components for inertial sensing. These components constitute gates with which we carry out quantum operations and represent input-output matter wave transformations between lattice eigenstates. Each gate is associated with a modulation pattern of the position of the optical lattice according to machine-designed protocols. In this methodology, a sensor can be reprogramed to respond to an evolving set of design priorities without modifying the hardware. We assert that such a gate set is metrologically universal, in analogy to universal gate sets for quantum computing. Experimental confirmation of the designed operation is demonstrated via imaging of the spatial evolution of a Bose-Einstein condensate in an optical lattice and by measurement of the momentum probabilities following time-of-flight expansion. The representation of several basic quantum sensing circuits is presented for the measurement of inertial forces, rotating reference frames, and gravity gradients. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
LeDesma, Catie; Mehling, Kendall; Shao, Jieqiu; Wilson, John Drew; Axelrad, Penina; Nicotra, Marco; Anderson, Dana Z; Holland, Murray (, Physical Review Research)Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024more » « less
-
Nicotra, Marco M.; Shao, Jieqiu; Combes, Joshua; Theurkauf, Anne Cross; Axelrad, Penina; Chih, Liang-Ying; Holland, Murray; Zozulya, Alex A.; LeDesma, Catie K.; Mehling, Kendall; et al (, IEEE Control Systems)
An official website of the United States government
